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Statistical mechanics in the context of special relativity
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In Ref. @Physica A296, 405 ~2001!#, starting from the one parameter deformation of the exponential
function exp$k%(x)5(A11k2x21kx)1/k, a statistical mechanics has been constructed which reduces to the
ordinary Boltzmann-Gibbs statistical mechanics as the deformation parameterk approaches to zero. The
distribution f 5exp$k%(2b E1bm) obtained within this statistical mechanics shows a power law tail and de-
pends on the nonspecified parameterb, containing all the information about the temperature of the system. On
the other hand, the entropic formSk5*d3p(ck f 11k1c2k f 12k), which after maximization produces the
distributionf and reduces to the standard Boltzmann-Shannon entropyS0 ask→0, contains the coefficientck

whose expression involves, beside the Boltzmann constant, another nonspecified parametera. In the present
effort we show thatSk is the unique existing entropy obtained by a continuous deformation ofS0 and
preserving unaltered its fundamental properties of concavity, additivity, and extensivity. These properties ofSk

permit to determine unequivocally the values of the above mentioned parametersb anda. Subsequently, we
explain the origin of the deformation mechanism introduced byk and show that this deformation emerges
naturally within the Einstein special relativity. Furthermore, we extend the theory in order to treat statistical
systems in a time dependent and relativistic context. Then, we show that it is possible to determine in a self
consistent scheme within the special relativity the values of the free parameterk which results to depend on the
light speedc and reduces to zero asc→` recovering in this way the ordinary statistical mechanics and
thermodynamics. The statistical mechanics here presented, does not contain free parameters, preserves unal-
tered the mathematical and epistemological structure of the ordinary statistical mechanics and is suitable to
describe a very large class of experimentally observed phenomena in low and high energy physics and in
natural, economic, and social sciences. Finally, in order to test the correctness and predictability of the theory,
as working example we consider the cosmic rays spectrum, which spans 13 decades in energy and 33 decades
in flux, finding a high quality agreement between our predictions and observed data.

DOI: 10.1103/PhysRevE.66.056125 PACS number~s!: 05.90.1m, 05.20.2y, 51.10.1y, 03.30.1p,
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I. INTRODUCTION

The following one-parameter deformations of the exp
nential and logarithm functions

exp$k%~x!5~A11k2x21kx!1/k, ~1.1!

ln$k%~x!5
xk2x2k

2k
, ~1.2!

which reduce to the standard exponential and logarithm,
spectively, as the real deformation parameterk approaches
zero, have been introduced recently in Ref.@1#. The above
functions have many very interesting properties@1–4# ~some
being identical to the ones of the undeformed functions! that
permit one to construct a statistical mechanics~and thermo-
dynamics! which generalizes the standard Boltzmann-Gib
one. Thisk-deformed statistical mechanics preserves un
tered the structure of the ordinary one and can be use
explain a very large class of experimentally observed p
nomena described by distribution functions exhibiting pow
law tails. The areas where this formalism can be app
include among others, low and high energy physics, as
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physics, econophysics, geology, biology, mathematics, in
mation theory, linguistics, etc.@5–9#.

In Ref. @1# it has been shown that the statistical distrib
tion

f 5exp$k%~2b@E2m#!, ~1.3!

which generalizes the Boltzmann-Gibbs distribution, can
obtained also by maximizing, after properly constrained,
entropy

Sk5E dnv~ck f 11k1c2k f 12k!, ~1.4!

which reduces to the standard entropyS0 as the deformation
parameter approaches to zero. The coefficientck , which also
absorbs the Boltzmann constantkB , depends on a free pa
rametera @see Eq.~65! of Ref. @1## which remains to be
determined together with the parameterb which contains the
information about the temperatureT of the system.

A first question which arises naturally is if it is possib
and how to find any criterion which allows us to fix th
parametersb anda or at least express these in terms of t
deformation parameterk, in order to reduce the free param
eters of the theory.

A second question regards the properties of the entr
Sk . It is well known that the Boltzmann-Shannon entropyS0
©2002 The American Physical Society25-1
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is concave, additive, and extensive. We know thatSk is con-
cave with respect to the variablef, but what happens abou
its additivity and extensivity? More in general, beside t
Boltzmann-Shannon entropy other concave, additive, and
tensive entropies do exist?

A third question is related to the physical mechani
which originates the deformation introduced by the para
eterk. In other words, does a more fundamental theory e
where this deformation emerges, or is it simply a pur
mathematical tool?

A fourth question is if it is possible to extend the theo
originally developed in the framework of a classical kinet
to treat statistical systems in the context of a relativistic
netics.

A fifth question regards the deformation parameterk.
This parameter will continue to remain free or is it possib
to determine its value self consistently within the theory?

The present paper deals with the above questions an
purpose is double. First, we will show thatSk is the unique
existing, concave, additive, and extensive entropy, beside
Boltzmann-Shannon entropy. As we will see these proper
of Sk are sufficient to determine unequivocally the values
parametersb and a. Second, we will show that the defo
mation introduced byk is a purely relativistic effect and the
we will explain the deformation mechanism within the Ei
stein special relativity. Then, we will formulate a relativist
k kinetics and we will calculate the value ofk.

Finally, in order to test the predictability and correctne
of theory here proposed we will consider two sets of exp
mental data. In particular we will analyze the cosmic ra
spectrum which spans 13 decades in energy and 33 dec
in particle flux that, as it is widely known, violates th
Boltzmann-Gibbs statistics. As we will see, we have a h
quality agreement between the theory and the observed

The paper is organized as it follows. In Sec. II, gener
izing the approach proposed in Refs.@1,2#, we introduce a
class of one parameter deformed structures and study
mathematical properties.

In Sec. III, within this context, starting from the Jayn
maximum entropy principle we consider the most gene
class of deformed statistical mechanics preserving the m
features of the standard Boltzmann-Gibbs one.

In Sec. IV, we show that the entropySk introduced in Ref.
@1# is the only one existing beside the Boltzmann-Shann
entropy S0 which is simultaneously concave, additive, a
extensive. Then the statistical mechanics and thermodyn
ics based onSk can be viewed as a natural extension of t
Boltzmann-Gibbs one, recovering this last as the deform
tion parameterk approaches to zero.

In Sec. V, we consider the mean properties ofk exponen-
tial and k logarithm which have a fundamental role in th
formulation of the statistical mechanics.

In Sec. VI, we extend the formalism to a time depend
and relativistic context. In particular after introducing th
relativistic k-kinetic evolution equation we study its statio
ary state and prove theH theorem.

In Sec. VII, we explain the origin of thek deformation
and show that it emerges naturally within the Einstein spe
relativity.
05612
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In Sec. VIII, we propose an approach which permits
determine within the special relativity the value of the p
rameterk.

In Sec. IX, we compare two sets of experimental d
with the predictions of the present theory.

Finally in Sec. X, some concluding remarks are report

II. DEFORMED MATHEMATICS

A. Generator of the deformation

Let g(x) be an arbitrary real function of the real variab
x, that we call generator of the deformation, having the f
lowing properties:

~i! g(x)PC`(R);
~ii ! g(2x)52g(x);
~iii ! dg(x)/dx.0;
~iv! g(6`)56`; and
~v! g(x)'x, for x→0.
Starting from the generatorg(x), we construct the rea

functionx$k% of the real variablex and depending on the rea
parameterk, as follows:

x$k%5
1

k
arcsinhg~kx!. ~2.1!

Its properties descend directly from the ones of the gener
g(x):

~i! x$k%PC`(R);
~ii ! (2x) $k%52x$k% ;
~iii ! dx$k% /dx.0;
~iv! (6`) $k%56`;
~v! x$k%'x, for x→0 and then 0$k%50;
~vi! x$k%'x, for k→0 and thenx$0%5x; and
~vii ! x$2k%5x$k% .
Together with the functionx$k% one can introduce the in

verse functionx$k%, through (x$k%) $k%5(x$k%)
$k%5x, which

assumes the form

x$k%5
1

k
g21~sinhkx!. ~2.2!

B. Deformed algebra

Proposition 1. The composition law%

k

defined through

~x%

k

y!$k%5x$k%1y$k% , ~2.3!

which reduces to the ordinary sum ask→0, namelyx%

0

y
5x1y, is a deformed sum and the algebraic structure (R,

%
k

) forms an Abelian group.
Proof. Indeed, from the definition ofx$k%, the following

properties of%
k

follow:

~i! associativity property, (x%

k

y) %

k

z5x%

k

(y%

k

z);

~ii ! neutral element,x%

k

050%

k

x5x;
5-2
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~iii ! opposite element,x%

k

(2x)5(2x) %

k

x50; and

~iv! commutativity property,x%

k

y5y%

k

x.

Of course thek-difference indicated with*
k

is defined as

x*

k

y5x%

k

(2y).

Proposition 2. The composition laŵ
k

defined through

~x^

k

y!$k%5x$k%•y$k% , ~2.4!

which reduces to the ordinary product ask→0, namelyx

^

0

y5xy, is a deformed product and the algebraic struct

(R2$0%,^

k

) forms an Abelian group.
Proof. Indeed from the definition ofx$k% we have the fol-

lowing properties:

~i! associative law, (x^

k

y) ^

k

z5x^

k

(y^

k

z);

~ii ! neutral element,x^

k

I 5I ^

k

x5x;

~iii ! inverse element,x^

k

x̄5 x̄^

k

x5I ; and

~iv! commutative law:x^

k

y5y^

k

x; I 51{ k} being the
neutral element while the inverse element ofx is x̄

5(1/x$k%)
$k%. Of course thek division �

k
is defined as

x�
k

y5x^

k

ȳ.

Proposition 3. The deformed sum%

k

and product̂
k

obey
the distributive law

z^

k

~x%

k

y!5~z^

k

x! %

k

~z^

k

y!, ~2.5!

and then the algebraic structure (R,%

k

,^

k

) forms an Abelian
field.

Proof. This proposition follows from the definitions~2.3!
and ~2.4!.

We remark that the field (R,%

k

,^

k

) is isomorphic with the

field (R,1,•). Moreover,z•(x%

k

y)Þ(z•x) %

k

(z•y) and then

the structure (R,%

k

,•) it is not a field.
Proposition 4. The functionx$k% has the two following

properties:

x$k% %

k

y$k%5~x1y!$k%, ~2.6!

x$k% ^

k

y$k%5~xy!$k%. ~2.7!
05612
e

Proof. These properties follow directly from the defin
tions given by Eqs.~2.3! and ~2.4!.

Proposition 5. The functionx$k% and its inversex$k% obey
the following scaling laws:

x$k8%
8 5zx$k% , ~2.8!

x8$k8%5zx$k%, ~2.9!

with

x85zx, ~2.10!

k85k/z. ~2.11!

Proof. These laws follow from the definitions of the func
tions x$k% andx$k%.

Proposition 6. The pseudodistributive law

z•~x%

k

y!5~z•x! %

k/z

~z•y! ~2.12!

holds and then the structure (R,%

k

,•) is a pseudofield.
Proof. Indeed, by using the propositions 1 and 5 one o

tains

z•~x%

k

y!5z•@~x%

k

y!$k%#
$k%5z•~x$k%1y$k%!

$k%

5z•S 1

z
x$k8%
8 1

1

z
y$k8%
8 D $k%

5z•S 1

z
~x8%

k8
y8!$k8%D $k%

5z•F S 1

z
~x8%

k8
y8!D

$k%
G $k%

5x8%

k8
y85~z•x! %

k/z

~z•y!.

C. Deformed derivative

Consider the two algebraic structures (X,%

k

,•) and (Y,
1,•) with X[R andY[R. Let us introduce the set of th

functionsF5$ f :X→
f

Y% with F#C`(X).
The k differential d$k%x is defined as

d$k%x5 lim
z→x

x*

k

z. ~2.13!

and results in being

d$k%x5dx$k% . ~2.14!

We define thek derivative for the functions of the setF
through
5-3
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d f~x!

d$k%x
5 lim

z→x

f ~x!2 f ~z!

x*

k

z

, ~2.15!

with x,zPX and f (x), f (z)PY. We observe that thek de-
rivative, which reduces to the usual one as the deforma
parameterk→0, can be written in the form

d f~x!

d$k%x
5

d f~x!

d x$k%
5

1

dx$k% /dx

d f~x!

dx
, ~2.16!

from which clearly it appears that thek derivative is gov-
erned by the same rules of the ordinary one.

D. Deformed exponential

Thek exponential exp$k%(x)PF is defined as eigenstate o
the k derivative

d exp$k%~x!

dx$k%
5exp$k%~x!, ~2.17!

and is given by

exp$k%~x!5exp~x$k%!. ~2.18!

It results in

exp$0%~x!5exp~x!, ~2.19!

exp$2k%~x!5exp$k%~x!. ~2.20!

The k exponential, just as the ordinary exponential, h
the properties

exp$k%~x!PC`~R!, ~2.21!

d

dx
exp$k%~x!.0, ~2.22!

exp$k%~2`!501, ~2.23!

exp$k%~0!51, ~2.24!

exp$k%~1`!51`, ~2.25!

exp$k%~x!exp$k%~2x!51. ~2.26!

Furthermore, thek exponential has the two properties

@exp$k%~x!# r5exp$k/r %~rx !, ~2.27!

exp$k%~x!exp$k%~y!5exp$k%~x%

k

y!, ~2.28!

with r PR, and can be expressed in terms of the gener
g(x) as

exp$k%~x!5@A11g~kx!21g~kx!#1/k. ~2.29!
05612
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E. Deformed logarithm

Thek logarithm ln$k%(x) is defined as the inverse functio
of the of k exponential, namely ln$k%(exp$k%x)5exp$k%(ln$k%x)
5x, and is given by

ln$k%~x!5~ ln x!$k%. ~2.30!

It results in

ln$0%~x!5 ln~x!, ~2.31!

ln$2k%~x!5 ln$k%~x!. ~2.32!

The k logarithm, just as the ordinary logarithm, has t
properties

ln$k%~x!PC`~R1!, ~2.33!

d

dx
ln$k%~x!.0, ~2.34!

ln$k%~01!52`, ~2.35!

ln$k%~1!50, ~2.36!

ln$k%~1`!51`, ~2.37!

ln$k%~1/x!52 ln$k%~x!. ~2.38!

Furthermore, thek logarithm has the two properties

ln$k%~xr !5r ln$rk%~x!, ~2.39!

ln$k%~xy!5 ln$k%~x! %

k

ln$k%~y!, ~2.40!

with r PR, and can be expressed in terms of the genera
g(x) as

ln$k%~x!5
1

k
g21S xk2x2k

2 D . ~2.41!

Equation ~2.41! defines a very large class of deforme
logarithms varying the arbitrary functiong(x). These de-
formed logarithms can depend on many other param
@through the generatorg(x)] besides the parameterk. We
recall briefly that in literature one can find other one@10,11#
or two @12# parameter deformations of the exponential a
logarithm functions. Anyway in the following we will con
sider the deformed logarithms defined through Eq.~2.41! and
depending only on the parameterk.

F. Deformed trigonometry

We define thek-hyperbolic sine and cosine

sinh$k%~x!5
1

2
@exp$k%~x!2exp$k%~2x!#, ~2.42!

cosh$k%~x!5
1

2
@exp$k%~x!1exp$k%~2x!#, ~2.43!
5-4
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starting from thek-Euler formula

exp$k%~6x!5cosh$k%~x!6sinh$k%~x!. ~2.44!

It is straightforward to introduce thek-hyperbolic trigonom-
etry, which reduces to the ordinary one ask→0. For in-
stance, the formulas

cosh$k%
2 ~x!2sinh$k%

2 ~x!51, ~2.45!

tanh$k%~x!5
sinh$k%~x!

cosh$k%~x!
, ~2.46!

coth$k%~x!5
cosh$k%~x!

sinh$k%~x!
~2.47!

still hold true. All the formulas of the ordinary hyperboli
trigonometry still hold true after properly deformed. The d
formation of a given formula can be obtained starting fro
the corresponding undeformed formula, and then by mak
in the argument of the hyperbolic trigonometric functions t

substitutionsx1y→x%

k

y, and obviouslynx→x%

k

x . . . %

k

x
(n times!. For instance, it results in

sinh$k%~x%

k

y!1sinh$k%~x*

k

y!52 sinh$k%~x!cosh$k%~y!,
~2.48!

tanh$k%~x!1tanh$k%~y!5
sinh$k%~x%

k

y!

cosh$k%~x!cosh$k%~y!
,

~2.49!

and so on.
The k –De Moivre formula involving hyperbolic trigono

metric functions having arguments of the typerx with r
PR, assumes the form

@cosh$k%~x!6sinh$k%~x!# r5cosh$k/r %~rx !6sinh$k/r %~rx !.
~2.50!

Also the formulas involving the derivatives of the hype
bolic trigonometric function still hold, after properly de
formed. For instance, we have

d sinh$k%~x!

dx$k%
5cosh$k%~x!, ~2.51!

d tanh$k%~x!

dx$k%
5

1

@cosh$k%~x!#2
, ~2.52!

and so on.
The k-cyclic trigonometry can be constructed ana

gously. Thek sine andk cosine are defined as

sin$k%~x!52 i sinh$k%~ ix !, ~2.53!

cos$k%~x!5cosh$k%~ ix !. ~2.54!
05612
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We remark that it results in: sin$k%(x)5sin(x$ik%) and cos$k%(x)
5cos(x$ik%).

G. Deformed inverse functions

The k-inverse hyperbolic or cyclic trigonometric func
tions can be introduced starting from the corresponding
rect functions just as in the case of the undeformed ma
ematics. It is trivial to verify thatk-inverse functions are
related to thek logarithm by the usual formulas of standa
mathematics. For instance, we have

arcsin$k%~x!52 i ln$k%~ ix1A12x2!, ~2.55!

arctanh$k%~x!5
1

2
ln$k%

11x

12x
, ~2.56!

and so on.

H. Deformed product and sum of functions

Let us consider the set of the non-negative real functi
D5$ f ,h,w, . . . %.

Proposition 7. The composition laŵ
k

defined through

f ^

k
h5exp$k%~ ln$k% f 1 ln$k%h!, ~2.57!

which reduces to the ordinary product ask→0, namely f
^
0

h5 f •h, is a deformed product and the algebraic struct

(D2$0%,^
k

) forms an Abelian group.

Proof. Indeed, this product has the following properties
~i! associative law, (f ^

k
h) ^

k
w5 f ^

k
(h^

k
w);

~ii ! neutral element,f ^
k

151^
k

f 5 f ;

~iii ! inverse element,f ^
k

(1/f )5(1/f ) ^
k

f 51; and

~iv! commutative law,f ^
k

h5h^
k

f .

Of course the divisionB
k

can be defined throughf B
k

h

5 f ^
k

(1/h). The deformedk power f ^ r is defined through

f ^ r5exp$k%~r ln$k% f !, ~2.58!

and generalizes the ordinary powerf r . In particular, whenr
is integer one hasf ^ r5 f ^

k
f . . . ^

k
f , ~r times!.

Proposition 8. The algebraic structure (D,^
k

) forms an

Abelian monoid.
Proof. Indeed the element 0 does not admit an inve

element.
Furthermore, just as in the case of the ordinary produc

results inf ^
k

050^
k

f 50.

Proposition 9. The composition law% defined through

k

5-5
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f %

k
h5exp$k%$ ln@exp~ ln$k% f !1exp~ ln$k%h!#%, ~2.59!

which reduces to the ordinary sum as the deformation par
eter approaches to zero, namelyf %

0
h5 f 1h, is a deformed

sum and the algebraic structure (D,%
k

) forms an Abelian

monoid.
Proof. Indeed, this sum has the following properties:
~i! associative law, (f %

k
h) %

k
w5 f %

k
(h%

k
w);

~ii ! neutral element,f %
k

050%
k

f 5 f ; and

~iii ! commutative law,f %
k

h5h%
k

f .

We remark that the product̂
k

and sum%
k

are distributive

operationsw^
k

( f %
k

h)5(w^
k

f ) %
k

(w^
k

h). The product̂
k

al-

lows us to write the following property of thek exponential

exp$k%~x! ^

k
exp$k%~y!5exp$k%~x1y!. ~2.60!

Equivalently Eq.~2.60! can be written also in the form

ln$k%~ f ^

k
h!5 ln$k%~ f !1 ln$k%~h!. ~2.61!

Equation~2.61! gives a relevant property for thek logarithm.
Finally, starting from the definition of thek power f ^ r ,

we obtain the following relation:

r ln$k%~ f !5 ln$k%~ f ^ r !. ~2.62!

The relations given by Eqs.~2.61! and ~2.62!, which ex-
press two mathematical properties of thek logarithm, will be
very useful in the following section in defining a new add
tive and extensive entropy.

III. THE JAYNES MAXIMUM ENTROPY PRINCIPLE

Let us consider the following non-normalized statistic
distribution involving thek exponential,

f 5exp$k%@2b~E2m!#. ~3.1!

We write the real nonspecified parameterb as

b5
1

lkBT
, ~3.2!

l being a new real parameter,kB the Boltzmann constant
andT the temperature of the system.

In the following it will be useful to introduce the distri
bution

n5a exp$k%S 2
E2m

lkBT D , ~3.3!
05612
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which is related withf throughn5a f , a being another new
real parameter which will be determined together withl in
the following.

We recall that in the ordinary statistical mechanics t
mean value of a given physical quantityA(p,n), depending
on the variablep and the distributionn5n(p), is defined as

^A~p,n!&5

E d3p A~p,n!n~p!

E d3p n~p!

. ~3.4!

Analogously, in the case whereA5A(p1 ,p2 ,n1 ,n2) de-
pends on two independent variablesp1 , p2 and on the two
independent distribution functionsn1(p1) and n2(p2), we
have that the mean value is given by

^A&5

E d3p1d3p2A n1~p1!n2~p2!

E d3p1d3p2n1~p1!n2~p2!

. ~3.5!

It is easy to verify that the stationary distributionn can be
obtained as a solution of the following variational equatio

d

dnE d3pF2kBlE ln$k%~n/a!dn2
1

T
En1

m

T
nG50.

~3.6!

Then the distributionn can be viewed as maximizing th
information contentI k,

I k5E d3p Jk~n!, Jk~n!5lE ln$k%~n/a!dn, ~3.7!

under the constraints

E d3p En5U, ~3.8!

E d3p n5N, ~3.9!

imposing the conservation of the mean energy and of
particle number, respectively. Note that the chemical pot
tial m should be chosen in such a way to set the part
number equal to unity, namelyN51@4#.

We observe that whenk50 it resultsJ0(n)5n ln n and
the information contentI 0 is the mean value of the ordinar
logarithm. In this case the above variational equation
presses the Jaynes maximum entropy principle which c
ducts to the Boltzmann-Gibbs statitical mechanics. In
following, in analogy with the standard statistical mechani
we require thatI k must be expressed as the mean value
ln$k%n. To do so we must consider the subclass of the
formed logarithms obeying the condition
5-6
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lE ln$k%~n/a!dn5n ln$k%n. ~3.10!

The above condition, as we will see in the following, allow
the simultaneous determination of both the form ofk loga-
rithm and the values of the free parametersa and l. First,
we observe that this class contains the standard logar
ln n, for which resultsk50, a51/e, l51. It will be the
task of the following section to investigate on the existen
of new additional solutions of Eq.~3.10!, beside the standar
logarithm. Taking into account this condition we can wr
the variational equation~3.6! in the form

d

dnE d3pS 2kBn ln$k%n2
1

T
E n1

m

T
nD50. ~3.11!

We define thek entropy through

Sk52kBE d3p n ln$k%n, ~3.12!

so thatSk can be viewed as proportional to the mean value
the ln$k%n, namely

Sk52kB^ ln$k%n&. ~3.13!

In this definition ofSk we have a perfect analogy with th
Shannon entropyS0 which is the proportional to the mea
value of the lnn. It is remarkable that in both the definition
of Sk andS0 appears the standard mean value given by
~3.4!.

Equation~3.11! assumes the form

d

dn S 2kB^ ln$k%n&2
1

T
^E&1

m

T D50, ~3.14!

and then

d

dn S Sk2
1

T
U1

m

T D50. ~3.15!

The above variational equation can be viewed as definin
maximum entropy principle analogous of the Jaynes p
ciple of the standard Boltzmann-Gibbs statistical mechan
@13#. We remark that this maximum entropy principle, in t
form given by Eq.~3.11!, holds only and exclusively for the
subclass ofk logarithms, which are solutions of the integr
equation~3.10!.

We show now that the families of entropies, defin
through~3.12! and involving thek-logarithms which are so
lutions of Eq.~3.10!, have two important properties typica
of the Shannon entropy. To do so we consider the prope
~2.61! and ~2.62! of k logarithm, which rearrange as

ln$k%n11 ln$k%n25 ln$k%n12, ~3.16!

r ln$k%n5 ln$k%n* , ~3.17!

with n125n1^
k

n2 andn* 5n^ r . When the systems 1 and

described throughn1 and n2, respectively, are statisticall
05612
m

e

f

q.

a
-
s

es

independent, and after taking into account the definitions
the mean values~3.4!, ~3.5! and of thek entropy~3.13!, the
two above properties of thek logarithm transform into the
following properties for thek entropy:

Sk@n1#1Sk@n2#5Sk@n12#, ~3.18!

rSk@n#5Sk@n* #. ~3.19!

Equations~3.18! and~3.19! say that the entropiesSk defined
starting from thek logarithms which are solutions of Eq
~3.10! are additive and extensive just as the Shannon entr
The distributionn12 describes the composite system obtain
starting from the systems 1 and 2 whilen* describes the
scaled system related to the system described througn.
Note that the state described through the distributionn12 is
different with respect to the state described through the
tribution n1n2 resultingSk@n12#<Sk@n1n2#.

Finally, from the concavity property of the deformedk
logarithm the concavity ofSk , follows

Sk@ tn11~12t !n2#>tSk@n1#1~12t !Sk@n2#, ~3.20!

with 0<t<1.
As we have already noted, the ordinary logarithm is so

tion of Eq. ~3.10! and then the Shannon entropy

S0@n#52kBE d3p n ln n, ~3.21!

which is additive and extensive (n125n1n2 andn* 5nr), is
admitted within the present formalism.

In the following section we will show that Eq.~3.10! ad-
mits a new~only one! less evident solution. Then beside th
Shannon entropy we have a new concave, additive, and
tensive entropy which is thek-entropy proposed in Ref.@1#.

IV. THE NEW ADDITIVE AND EXTENSIVE ENTROPY

We consider Eq.~3.10! which, after performing a deriva
tion with respect ton, assumes the form

n
d

dn
ln$k%n1 ln$k%n2l ln$k%~n/a!50. ~4.1!

In the following we will determine the explicit form of ln$k%n
by solving this differential-functional equation. We reca
that ln$k%n can be expressed in terms of the generator func
according to Eq.~2.41! so that Eq.~4.1! becomes

n
d

dn
g21S nk2n2k

2 D1g21S nk2n2k

2 D
2lg21S ~n/a!k2~n/a!2k

2 D50. ~4.2!

In the above equation the function to be determined is n
the generator functiong. To do so we make the following
changes of variables:

t5k ln n, ~4.3!
5-7
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z~ t !5g21~sinht !, ~4.4!

c52k ln a, ~4.5!

so that Eq.~4.2! assumes the following simple form:

k z8~ t !1z~ t !2lz~ t1c!50. ~4.6!

The property~v! of the generatorg(x) imposes thatz(t)
obeys the two conditionsz(0)50 andz8(0)51. These con-
ditions, if combined with Eq.~4.6!, can be equivalently writ-
ten in the form

lz~c!5k, ~4.7!

lz8~c!51. ~4.8!

It is more convenient to take into account these conditi
and write Eq.~4.6! under the form

z~ t1c!5z~ t !z8~c!1z8~ t !z~c!. ~4.9!

After recalling the property~ii ! of g(x), which imposes that
z(2t)52z(t), Eq. ~4.9! can be written as

2z~c!z8~ t !5z~c1t !1z~c2t !. ~4.10!

Let us introduce the new functionw(t)5z8(t). We can see
that Eq.~4.10!, after deriving with respect toc, transforms
into the following functional equation:

2w~c!w~ t !5w~c1t !1w~c2t !. ~4.11!

Finally the nonlinear transformation defined throughw(t)
5coshj(t) permits us to write the last equation under t
form

cosh@j~c!1j~ t !#1cosh@j~c!2j~ t !#5cosh@j~c1t !#

1cosh@j~c2t !#. ~4.12!

It is trivial to verify that the most general solution of Eq
~4.12! is given by

j~ t !5rt , ~4.13!

with r an arbitrary real parameter.
Shannon solution. We note that in the caser 50 we obtain

g(x)5sinhx and then ln$k%(n)5ln n. This is the well known
standard logarithm which, inserted in Eq.~3.12!, produces
the Shannon entropy.

The new solution. We consider now the caserÞ0. It is
easy to realize that in this case the generatorg(x) assumes
the form

g~x!5sinhF1

r
arcsinh~rx !G . ~4.14!

For simplicity of the exposition we first discuss the caser
51 for which g(x)5x. After some simple calculations w
obtain that only when

21,k,1, ~4.15!
05612
s

it is possible to determine the real constantsl anda obtain-
ing

l5A12k2, ~4.16!

a5S 12k

11k D 1/2k

. ~4.17!

In this case the generatorg(x)5x imposes the following
expressions for the deformed logarithm and exponential

ln$k%~x!5
xk2x2k

2k
, ~4.18!

exp$k%~x!5~A11k2x21kx!1/k. ~4.19!

For the general case whererÞ1 we obtain the same solutio
given by Eqs.~4.15!–~4.19! with the only difference that in
place ofk now the scaled parameterrk appears. Then we
can setr 51 without loosing the generality of the theor
Moreover for k50 we obtain the Shannon solution as
particular and limiting case of the new solution.

Finally, after inserting the expression of thek-logarithm
given by Eq.~4.18! into Eq. ~3.12!, we can write the new
additive and extensive entropy in the following simple form

Sk@n#52kBE d3p
n11k2n12k

2k
. ~4.20!

We can write the entropySk also in terms of the distribu-
tion f obtaining

Sk@ f #52kBE d3p~ck f 11k1c2k f 12k!, ~4.21!

where the coefficientck5a11k/2k depends exclusively on
the deformation parameterk and is given by

ck5
1

2k S 12k

11k D ~11k!/2k

. ~4.22!

The above entropy is contained, as a particular case, in
class of entropies introduced previously in Ref.@1# @In Eq.
~65! of this reference it appears the nonspecified param
a, while the Boltzmann constant is absent because sette
havekB(11k)a51].

We recall that the entropy given by Eq.~4.20! is different
from the nonextensive entropy introduced in Refs.@14,15#.
Of course the statistical distribution defined through E
~3.1! and ~4.19!, introduced previously in Ref.@1#, is also
different from the distribution of the nonextensive statist
@15# and of the plasmas physics@16#.

V. THE k EXPONENTIAL AND k LOGARITHM

Let us report here the main mathematical properties, so
of these reported in Refs.@1–3#, of the functions exp$k%(x)
and ln$k%(x) defined through Eqs.~4.18! and ~4.19!, respec-
tively.

We start by observing that the generator of the deform
5-8
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tion is the functiong(x)5x and then from~2.1! and~2.2! we
obtain

x$k%5
1

k
arcsinh~kx!, ~5.1!

x$k%5
1

k
sinh~kx!. ~5.2!

We have also~Ref. @17#, p. 58!

x$k%5x FS 1

2
,
1

2
;
3

2
;2k2x2D , k2x2<1. ~5.3!

The following function:

@x#5
qx2q2x

q2q21 , ~5.4!

which has a central role in quantum group theory@18,19#,
results in being proportional tox$k%; namely, we have the
relation

@x#5
1

ln$k%~e!
x$k%, ~5.5!

which can be written also in the form

@x#5
ln$k%~ex!

ln$k%~e!
, ~5.6!

with q5ek. We note that the well known symmetry of qua
tum group theoryq↔q21 is related the symmetryk↔2k
of the present theory. We also observe that, exploiting E
~2.6! and~2.7!, we can obtain the two following properties o
the function@x#:

@x1y#5@x# %

k8
@y#, ~5.7!

@xy#5@x# ^

k8
@y#, ~5.8!

with k85(q2q21)/2.
The definitions ofk-sum andk-product given through

Eqs.~2.3! and ~2.4!, respectively transform as follows:

x%

k

y5
1

k
sinh@arcsinh~kx!1arcsinh~ky!#, ~5.9!

x^

k

y5
1

k
sinhS 1

k
arcsinh~kx! arcsinh~ky! D . ~5.10!

In particular, thek-sum assumes a very simple form

x%

k

y5xA11k2y21yA11k2x2. ~5.11!
05612
s.

Starting directly from thek sum given by Eq.~5.11!, one
obtains the following expressions for thek differential andk
derivative:

dx$k%5
dx

A11k2x2
, ~5.12!

d f~x!

dx$k%
5A11k2x2

d f~x!

d x
. ~5.13!

We consider now the functions exp$k%(x) and ln$k%(x) which
can be written also as

exp$k%x5expS 1

k
arcsinhkxD , ~5.14!

ln$k%~x!5
1

k
sinh~k ln x!. ~5.15!

We point out the following concavity properties:

d2

dx2 exp$k%~x!.0, xPR, ~5.16!

d2

dx2 ln$k%~x!,0, x.0. ~5.17!

A very interesting property of these functions is their pow
law asymptotic behavior

exp$k%~x! ;
x→6`

u2kxu61/uku, ~5.18!

ln$k%~x! ;
x→01

2
1

2uku
x2uku, ~5.19!

ln$k%~x! ;
x→1`

1

2uku
xuku. ~5.20!

The Taylor expansion of thek exponential is given by

exp$k%~x!5 (
n50

`

an~k!
xn

n!
, k2x2,1 ~5.21!

~Ref. @17#, p. 26!, with the coefficientsan defined as

a0~k!51, a1~k!51,

a2m~k!5 )
j 50

m21

@12~2 j !2k2#, ~5.22!

a2m11~k!5)
j 51

m

@12~2 j 21!2k2#.

It results thatan(0)51 andan(2k)5an(k). We note that
the first three terms in the above Taylor expansion are
same as the ordinary exponential, namely,
5-9
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exp$k%~x!511x1
x2

2
1~12k2!

x3

3!
1•••. ~5.23!

In Fig. 1, the function exp$k%(2x) for a fixed value ofk is
plotted. We note that the bulk of this function is very close
the standard exponential. Indeed the Taylor expansion
exp$k%(2x) is the same, up to second order, of the one
exp(2x). The tail of exp$k%(2x) behaves as a power law
Between the bulk and the tail an intermediate region wh
extension depends on the value ofk exists.

In Fig. 2, the function exp$k%(2x) for some different val-
ues of k is plotted. We note that whenk→0 the
k-exponential approaches the ordinary one.

The Taylor expansion of ln{ k} (11x) converges if21,x
<1 and assumes the form

ln$k%~11x!5 (
n51

`

bn~k!~21!n21
xn

n
, ~5.24!

~Ref. @17#, p. 25!, with b1(k)51, while for n.1, bn(k) is
given by

FIG. 1. Plot of the function exp$k%(2x) versusx for k50.3. This
function is compared with the ordinary exponential and with a p
power law.

FIG. 2. Plot of the function exp$k%(2x) versusx for some differ-
ent values ofk. The casek50 corresponds to the ordinary expo
nential.
05612
of
f

e

bn~k!5
1

2
~12k!S 12

k

2D •••S 12
k

n21D
1

1

2
~11k!S 11

k

2D •••S 11
k

n21D . ~5.25!

It results inbn(0)51 andbn(2k)5bn(k). The first terms
of the expansion are

ln$k%~11x!5x2
x2

2
1S 11

k2

2 D x3

3
2•••. ~5.26!

Another expansion involving thek exponential (x2<1) is
the following:

exp$k%~x!5expS (
n50

`

dnk2nx2n11D ~5.27!

~Ref. @17#, p. 58!, being

dn5
~21!n~2n!!

~2n11!22n~n! !2 . ~5.28!

Exploiting this expansion, we can write thek exponential as
an infinite product of standard exponentials

exp$k%~x!5 )
n50

`

exp~dnk2nx2n11!. ~5.29!

On the other hand thek exponential can be viewed as
continuous linear combination of an infinity of standard e
ponentials. Namely, for Res>0 it results~Ref. @17#, p. 1108!

exp$k%~2s!5E
0

` 1

kx
J1/kS x

k Dexp~2sx!dx. ~5.30!

The following two integrals can be useful:

E
0

`

xr 21exp$k%~2x!dx

5
@11~r 22!uku#u2ku2r

@12~r 21!uku#22k2

GS 1

u2ku
2

r

2D
GS 1

u2ku
1

r

2D G~r !,

~5.31!

E
0

1S ln$k%

1

xD r 21

dx5
u2ku12r

11~r 21!uku

GS 1

u2ku
2

r 21

2 D
GS 1

u2ku
1

r 21

2 D G~r !.

~5.32!

We conclude the present section focusing our attention
another interesting property ofk logarithm. We consider the
following eigenvector equation:

Dk~x!L~x!5 l kL~x!, ~5.33!

e

5-10
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and examine the case of the eigenvectorL(x)5nx. It is
trivial to verify that whenD0(x)5d/dx we obtain that the
eigenvaluel 0 of this operator is the standard logarithml 0
5 ln n. We pose now the question if it is possible to det
mine the operatorDk(x) associated to the same eigenvec
L(x)5nx and having as eigenvalue thek logarithm, namely,

l k5 ln$k%n. ~5.34!

We obtain that this operator is the finite difference operat

Dk~x!L~x!5
L~x1k!2L~x2k!

2k
, ~5.35!

which reduces to the standard derivative as the incremenk
of the independent variable approaches to zero.

One can find many other elegant and useful mathema
properties for thek functions which obviously we canno
report here.

VI. RELATIVISTIC KINETICS

In this section we treat the statistical system, conside
previously in stationary conditions, within a relativistic an
kinetic framework. The new relativistic kinetics here pr
sented, in the limitc→`, reduces to the classical kinetic
considered in Ref.@1#.

By using the standard notation of the relativistic theo
we denote withx5xn5(ct,x) the four-vector position and
with p5pn5(p0,p) the four-vector momentum, beingp0

5Ap21m2c2 and employ the metricgmn5diag(1,21,21,
21) @20#.

Let us consider the following relativistic kinetic equatio

pn]n f 2mFn
] f

]pn5E d3p8

p80

d3p1

p1
0

d3p18

p81
0 G

3@a~ f 8^

k
f 18!2a~ f ^

k
f 1!#, ~6.1!

where the distributionf is a function of the four vectorsx and
p, namelyf 5 f (x,p). We note that the left hand side of E
~6.1! is the same of the standard relativistic Boltzmann eq
tion but the collision integral in the right hand side results
be more complicated, containing the deformed product^

k

and the arbitrary functiona( f ) which we suppose to be pos
tive and increasing. The factorG is the transition rate which
depends only on the nature of the two body particle inter
tion.

The above equation in the casek50 anda( f )5 f reduces
to the already known relativistic Boltzmann equation d
scribing the standard relativistic kinetics@20#. Clearly in the
casekÞ0 anda( f )Þ f , the above equation describes a ne
relativistic kinetics, radically different from the standard on

We anticipate that this new relativistic kinetics, which w
will consider here, defines a statistics resulting to be in
pendent on the particular form of the functiona( f ).
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Steady states. We consider now the steady states of E
~6.1! for which the collision integral becomes equal to ze
Then we have

f ^

k
f 15 f 8^

k
f 18 , ~6.2!

and after taking into account the property~2.61! of the k
logarithm, we obtain

ln$k% f 1 ln$k% f 15 ln$k% f 81 ln$k% f 18 . ~6.3!

This last equation represents a conservation law and then
can conclude that ln$k%f is a summational invariant; in the
most general case it is a linear combination of the mic
scopic relativistic invariants, namely a constant and the fo
vector momentum. In Ref.@20# it is shown that in presence
of external electromagnetic fields the more general mic
scopic relativistic invariant has the form (pn1qAn/c)Un1
constant, beingUn the hydrodynamic four-vector velocity
with UnUn5c2. Then we can pose

ln$k% f 52
~pn1qAn/c!Un2mc22m

lkBT
. ~6.4!

Consequently we obtain the following stationary distrib
tion:

f 5exp$k%S 2
~pn1qAn/c!Un2mc22m

lkBT D . ~6.5!

In the casek50 this distribution reduces to the alread
known relativistic distribution@20#.

The above equilibrium distribution, in the global re
frame whereUn5(c,0,0,0) and in absence of external forc
(An50), simplifies as

f 5exp$k%S 2
E2m

lkBT D , ~6.6!

and assumes the same form of the distribution~3.1!.
We remark that forE2m@lkBT this distribution pre-

sents a power law behavior, namely,

f 'S E*
E D 1/k

, ~6.7!

beingE* 5kBTA12k2/2k.
In order to introduce explicitly the dependence on t

velocity variable in the distribution~6.6!, we consider the
expression of the relativistic kinetic energyE5E(v),

E5Am2c41p2c22mc2, ~6.8!

with p5mg(v)v and the Lorentz factor given by

g~v !5
1

A12v2/c2
. ~6.9!

After definingh5m/mc2 we write Eq.~6.6! as follows:
5-11
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f 5exp$k%S 2
mc2

lkBT
@g~v !212h# D . ~6.10!

Note that in the regionv!c this distribution assumes th
form

f 'exp$k%
S 2

1

2
mv22m

lkBT
D , ~6.11!

which, after settinglkBT51/b, coincides with the nonrela
tivistic statistical distribution, proposed in Ref.@1#.

H theorem. In the standard relativistic kinetics it is we
known from theH theorem that the production of entropy
never negative and in equilibrium conditions there is no
tropy production. In the following we will demonstrate theH
theorem for the system governed by the kinetic equa
~6.1!. For simplicity of the notation, hereafter we omit th
letterk in the symbol ofk entropy. We define the four-vecto
entropyS5Sn5(S0,S), in terms of the distributionn5a f ,
as follows:

Sn52kBE d3p

p0 pnn ln$k%n, ~6.12!

and note thatS0 coincides with thek entropy defined previ-
ously through Eq.~4.20! while S is the entropy flow. If we
take into account the relation~3.10!, the above four-vector
entropy can be written in terms of the distributionf as

Sn52kBlaE d3p

p0 pnE d f ln$k% f . ~6.13!

It is trivial to verify that the entropy production]nSn can be
calculated starting from the definition ofSn and the evolution
equation~6.1!, obtaining

]nSn52kBlaE d3p

p0 ~ ln$k% f !pn]n f

52kBlaE d3p8

p80

d3p1

p1
0

d3p18

p81
0

d3p

p0 G@a~ f 8^

k
f 18!

2a~ f ^

k
f 1!# ln$k% f 2kBlamE d3p

p0 ~ ln$k% f !Fn
] f

]pn .

~6.14!

Since the Lorentz forceFn has the propertiespnFn50 and
]Fn/]pn50 the last term in the above equation involvingFn

is equal to zero@20#, namely,

]nSn52kBlaE d3p8

p80

d3p1

p1
0

d3p18

p81
0

d3p

p0 G@a~ f 8^

k
f 18!

2a~ f ^

k
f 1!# ln$k% f . ~6.15!

Given the particular symmetry of the integral in Eq.~6.15!
we can write the entropy production as follows:
05612
-

n

]nSn52
1

4
kBlaE d3p8

p80

d3p1

p1
0

d3p18

p81
0

d3p

p0 G@a~ f 8^

k
f 18!

2a~ f ^

k
f 1!#@ ln$k% f 1 ln$k% f 12 ln$k% f 82 ln$k% f 18#.

~6.16!

Finally, we set this equation in the form

]nSn5
1

4
kBlaE d3p8

p80

d3p1

p1
0

d3p18

p81
0

d3p

p0 G@a~ f 8^

k
f 18!

2a~ f ^

k
f 1!#@ ln$k%~ f 8^

k
f 18!2 ln$k%~ f ^

k
f 1!#.

~6.17!

After imposing thata(h) is an increasing function, it result
@a(h1)2a(h2)#@ ln$k%(h1)2ln$k%(h2)#>0 ;h1 ,h2 and then we
can conclude that

]nSn>0. ~6.18!

This last relation is the local formulation of the relativisticH
theorem which represents the second law of the thermo
namics for the system governed by the evolution equa
~6.1!.

Concerning the arbitrary positive and increasing funct
a( f ) appearing in the collision integral of the evolutio
equation, we note that, if we suppose that obeys to the
lowing condition:

a~ f ^

k
f 1!5a~ f !a~ f 1! ~6.19!

we recover the expression

a~ f !5exp~ ln$k% f !, ~6.20!

proposed in Ref.@1#.

VII. PHYSICAL MEANING OF THE k DEFORMATION

In this section we will show that the deformation intro
duced by the parameterk emerges naturally within Ein-
stein’s special relativity, so that one can see thek deforma-
tion as a purely relativistic effect.

Let us consider in the one-dimensional frameS two iden-
tical particles of rest massm. We suppose that the first pa
ticle moves toward right with velocityv1 while the second
particle moves toward the left with velocityv2. The relativ-
istic momenta of the particles are given byp15p(v1) and
p25p(v2), respectively, being

p~v !5
mv

A12v2/c2
. ~7.1!
5-12
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We consider now the same particles in a new frameS8
which moves at constant speedv2 toward left with respect to
the frameS. In this new frame the particles have velociti
given byv185v1%

cv2 andv2850, respectively, being

v1%
cv25

v11v2

11v1v2 /c2 , ~7.2!

the well known relativistic additivity law for the velocities
In the same frameS8 the particle relativistic momenta ar
given byp185p(v18) andp2850, respectively. Up to now, we
have simply recalled some well known concepts of the s
cial relativity @21#.

Let us pose the following question: if it is possible a
how to obtain the value of the relativistic momentump18
starting directly from the values of the momentap1 andp2 in
the frameS. The answer to this apparently innocent quest
is affirmative. One, after straightforward calculations~see the
theorem in this section!, arrives at the following surprising
result:

p185p~v1! %

k

p~v2!; k5
1

mc
. ~7.3!

In words, the relativistic momentump18 of the first particle in
the rest frame of the second particle is thek-deformed sum,
with k51/mc, of the momentap1 andp2 of the particles in
the frameS.

Unexpectedly we discover that thek sum is the additivity
law for the relativistic momenta. Eq.~7.3! which we write in
the form

p~v1! %

k

p~v2!5p~v1%
cv2!, k5

1

mc
, ~7.4!

says that thek-deformed sum and the relativistic sum of th
velocities are intimately related and reduce both, to the s
dard sum as the velocityc approaches to infinity. The defor
mations in both the cases are relativistic effects and are o
nated from the fact thatc has a finite value. Eq.~7.4! follows
as a particular case from the following theorem.

Theorem. Let

pi~v i !5
miv i

A12v i
2/c2

~7.5!

be the relativistic momenta of two particles (i 51,2) of rest
massm1 andm2 which move in the one-dimensional fram
S with speedv1 and andv2, respectively. If we indicate with

%
k

the k-sum defined through Eq.~5.11! and with %
c the

velocity relativistic additivity law defined through Eq.~7.2!,
it results in

p1~v1!

m1
%

k p2~v2!

m2
5

pi~v1%
cv2!

mi
, k5

1

c
. ~7.6!
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Proof. We start by using the definition of thek sum, sub-
sequently we use the explicit form of the relativistic mome
tum and finally we use the definition of the velocity relati
istic additivity law

p1~v1!

m1
%

k p2~v2!

m2

5
p1~v1!

m1
A11Fp2~v2!

m2c G2

1
p2~v2!

m2
A11Fp1~v1!

m1c G2

5
v1

A12~v1 /c!2
A11

~v2 /c!2

12~v2 /c!2

1
v2

A12~v2 /c!2
A11

~v1 /c!2

12~v1 /c!2

5
v11v2

A@12~v1 /c!2#@12~v2 /c!2#

5~v1%
cv2!

11v1v2 /c2

A@12~v1 /c!2#@12~v2 /c!2#

5
v1%

cv2

A12
1

c2 S v11v2

11v1v2 /c2D 2

5
v1%

cv2

A12
~v1%

cv2!2

c2

5
pi~v1%

cv2!

mi
. ~7.7!

Trivially from Eq. ~7.6! one obtains Eq.~7.4! as the par-
ticular case, whenm15m25m. Note that the parameterk
has different values in these two equations because
summed quantities in the two cases are different.

We can easily explain the meaning of the deformed
rivative. We indicate withp the relativistic momentum in the
frameS, and withdG/dp the derivative with respect top of
the Lorentz invariant scalarG. The same quantities in th
frameS8 are indicated withp8 anddG/dp8, respectively. It
is trivial to verify that

dG

dp$k%
5

dG

dp8
, ~7.8!

and then we can conclude that thek-deformed derivative can
be viewed as a standard derivative in an appropriate fram

In the following section we will consider, in the frame
work of the special relativity, thek statistics ofN-identical
particles, wherek is a dimensionless parameter and we w
determine its value. To do so, it is more convenient to wr
Eq. ~7.4! in the form

p~v1!

kmc
%

k p~v2!

kmc
5

p~v1%
cv2!

kmc
. ~7.9!
5-13
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which holds for anyk.

VIII. DETERMINATION OF THE PARAMETER k

In this section we calculate the value of the parametek
which, due to the symmetryk↔2k of the theory, we con-
sider positive, namely 0<k,1. Clearly if we start from the
k-statistical distributionsf 1 and f 2 describing two indepen
dent statistical systems, we can construct the distributionf 1
^
k

f 2 which describes a new composite system. This sys

in the casek50 reduces to the one described through
distribution f 1f 2. In the following we will assume thatthe
distribution f1f 2 describes a state also in the casekÞ0.
Obviously this state is different from the one described
f 1^

k
f 2. As we will see, this simple but meaningful hypot

esis is sufficient to determine the value ofk in the case of
relativistic statistical systems.

Taking into account the form of the distributionsf 1 and f 2
given by Eq.~6.6! ~for simplicity we posem50), and the
property~2.28! of the k exponential one can write immed
ately

exp$k%S 2
E1

lkBTDexp$k%S 2
E2

lkBTD
5exp$k%S 2

E1

lkBT
%

k E2

lkBT
D , ~8.1!

with Ei5E(v i). After some simple algebra we rewrite E
~8.1! as follows:

exp$k%S 2
E1

lkBTDexp$k%S 2
E2

lkBTD5exp$k%S 2
E3

lkBTD ,

~8.2!

with E35E1A11E2
2/E0

21E2A11E1
2/E0

2 and

E05
lkBT

k
. ~8.3!

We assume now that thek exponential in the right-hand sid
of the Eq.~8.2! has the same structure of the one given
Eq. ~6.6!. Clearly we must impose thatE0 be exclusively
expressed in terms of nonstatistical parameters. In the
lowing we will show thatE05mc2. To do this we exploit
Eq. ~7.9! obtained within the special relativity. Starting from
this equation and taking into account the property~2.28! of
the k exponential we obtain

exp$k%S 2
p~v1!

kmc Dexp$k%S 2
p~v2!

kmc D
5exp$k%S 2

p~v1% cv2!

kmc D . ~8.4!

Recall that we wish to calculate the parameterk which
has a value that does not depend on the particle energy. T
05612
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y
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without losing generality, we can consider Eq.~8.4! in the
ultrarelativistic region (v→c) where it results inp(v)
'E(v)/c:

exp$k%S 2
E~v1!

kmc2 Dexp$k%S 2
E~v2!

kmc2 D
5exp$k%S 2

E~v1% cv2!

kmc2 D . ~8.5!

After comparing Eqs.~8.2! and~8.5!, one obtains the relation

kmc25lkBT, ~8.6!

which is the same as the one given by Eq.~8.3!, only if we
impose thatE05mc2. Equation~8.6! can be also written as

kBT5mc2
k

A12k2
, ~8.7!

and results in being formally similar (kBT/c↔p, k↔v/c)
to the relation defining the relativistic momentum given
Eq. ~7.1!. We can extract finally the value ofk obtaining

1

k2 511S mc2

kBT D 2

. ~8.8!

It is important to emphasize that this expression of the
rameterk holds only under the above mentioned hypothe
and imposes thatuku,1. This condition on the value ofk
coincides with the one expressed by Eq.~4.15! and obtained
in a completely different way. We havek50 only if T50 or
if c5`. The limiting casek51 is obtained ifT5` or if
mc250.

At this point one can write the distribution~6.6! in the
form

f 5exp$k%S 2
1

k

E2m

mc2 D . ~8.9!

Note that the statistical information of the system, nam
the temperature is hidden exclusively in the parameterk.
When E→` the distribution ~8.9! shows a power law
asymptotic behavior

f 'S mc2

2E D 1/k

. ~8.10!

The distribution~8.9! viewed as a function of the velocity
becomes

f 5exp$k%S 2
g~v !212h

k D , v,c. ~8.11!

Concerning its derivative one obtains

d f

dv
52

v
kc2

g3

A11~g212h!2
f , ~8.12!

and then forv→c it results in
5-14
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d f

dv
'2

1

ck2111/2kS 12
v
cD 2111/2k

. ~8.13!

Then fork,1/2 one has bothf 50 andd f /dv50 in v5c.
For k.1/2 resultsf 50 andd f /dv52` in v5c. Finally
for k51/2 resultsf 50 andd f /dv521/2c in v5c.

In the nonrelativistic region for whichv!c we have

f 'exp$k%
S 2

1

2
mv22m

kmc2
D , ~8.14!

while in the limit c→` one recovers the standard Maxwe
ian distribution

f M5expS 2

1

2
mv22m

kBT
D . ~8.15!

The explicit form of the distribution~8.11! when m5
2mc2 simplifies as follows:

f 5SA 12v2/c2

11A22v2/c2D 1/k

, v,c, ~8.16!

and in the limitc→` becomes

f M5expS 2
mv2

2kBTD . ~8.17!

In Fig. 3, the distribution function given by Eq.~8.16!
~after normalization! versusv/c for different values ofk and
then for different values ofmc2/kBT, according to Eq.~8.8!,
is plotted.

IX. EXPERIMENTAL EVIDENCES

For a long time it has been known that the cosmic
spectrum, which extends over 13 decades in energy, fro
few hundred of MeV (108 eV) to a few hundred of EeV
(1020 eV) and spans 33 decades in particle flux, from 104 to

FIG. 3. Plot of the distribution function~after normalization!
given by Eq.~8.16! versusv/c for some different values ofk.
05612
y
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10229 (m2sr s GeV)21, is not exponential and then it vio
lates the Boltzmann equilibrium statistical distributio
}exp(2E/kBT) @22–24#. Approximately this spectrum fol-
lows a power lawE2a and the spectral indexa is near 2.7
below 531015 eV, near 3.1 above 531015 eV and again
near 2.7 above 331018 eV. On the other hand it is known
that the particles composing the cosmic rays are essent
the normal nuclei as in the standard cosmic abundance
matter. Then the cosmic rays can be viewed as an equiva
statistical system of identical relativistic particles wi
masses near the mass of the proton~938 MeV!.

These above characteristics~relativistic particles with a
very large extension both for their flux and energy! yield the
cosmic rays spectrum an ideal physical system for a preli
nary test of the correctness and predictability of the the
here proposed.

We consider the statistical distributionf (E) given by Eq.
~6.6! or ~8.9!. The particle fluxF(E)}p2f (E) can be calcu-
lated trivially if we take into account the relativistic expre
sion linking E andp obtaining

F~E!5AF S E

mc2 11D 2

21Gexp$k%@2b~E2m!#. ~9.1!

Note that this particle flux, in agreement with the observ
tional data, decays following the power law

F~E!}E2a, ~9.2!

with

a5A11S mc2

kBT D 2

22. ~9.3!

Analogously the particle flux obtained starting from th
Boltzmann-Gibbs statistical distribution is given by

F0~E!5A0F S E

mc2 11D 2

21GexpS 2
E

kBTD . ~9.4!

We use these two theoretical distributions of particle fl
to fit the cosmic rays data reported in Ref.@24#. In Fig. 4, we
show the observed data together with the theoretical cu
F(E) ~solid line! andF0(E) ~dotted line!. The curveF(E)
corresponding toA5105 (m2sr s GeV)21, mc25938 MeV,
m52375 MeV, and k50.2165 provides a high quality
agreement with the observed data. This agreement ove
many decades is quite remarkable. From the value ofk and
mc2 and adopting Eq.~8.7! we obtain thatkBT5208 MeV.

In the same figure the curveF0(E) @with A051.33104

(m2sr s GeV)21, mc25938 MeV, and kBT5208 MeV]
which decays exponentially and cannot fit the observed d
violating the Boltzmann-Gibbs statistics, is reported .

A short remark must be made at this point. Clearly, t
power law asymptotic behavior of the spectrumF(E) is im-
posed by thek exponential whose origin is thek sum. But
the k sum emerges naturally within the special relativity
the composition law of the relativistic momenta. Then w
5-15
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G. KANIADAKIS PHYSICAL REVIEW E 66, 056125 ~2002!
can conclude that the power law asymptotic behavior of
cosmic rays flux is simply the signature of the particle re
tivistic nature.

It is widely known that the Boltzmann-Gibbs distributio
exp(2E/kBT) originally proposed to describe a classical p
ticle gas in thermodynamic equilibrium can be adopted
describe an enormous amount of phenomena in nature
the other hand the power law tails have been observed
perimentally in several fields of science. Some times in p
ticular fields, this power law has a name~e.g., Pareto law in
econophysics, Gutenberg-Richter law in seismology e!.
Furthermore the power law tail is preceded by an exponen
region and between the two regions exists a third interm
ate region. It is worth remarking that thek exponential de-
fines a distribution which can describe simultaneously
three above regions~see Fig. 1! and then is particularly suit
able to describe the above mentioned phenomena.

As a working example we analyze the experimental d
reported in Ref.@8# related to the rain events in meteorolog
In Fig. 5 is plotted the number densityN@events/(year mm)#
of rain events versus the event sizeM @mm# on a double
logarithmic scale. We note that the data have a large ex
sion ~the abscissa spans 7 decades and the ordinate 5! and
remark that its behavior is typical of a class of experimen
data which we find in several areas of science. In order to
the experimental data we adopt the distribution

N5Aexp$k%~2bM !, ~9.5!

and, as one can see in Fig. 5, a remarkable agreeme
obtained with A583104 @events/~year mm!#, b575
(mm21) andk50.7.

FIG. 4. Plot of the cosmic rays flux versus energy. The solid l
is the curve obtained within the present theory and is given by
~9.1! with A5105 (m2sr s GeV)21, mc25938 MeV, m5
2375 MeV, k50.2165, andkBT5208 MeV. The dotted line rep-
resents the theoretical curve obtained within the standard Boltzm
Gibbs statistics given by Eq. ~9.4! with A051.33104

(m2sr s GeV)21, mc25938 MeV, andkBT5208 MeV. The obser-
vational data are collected by Swordy@24#.
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Clearly, one can hunt other mechanisms, different fr
the relativistic one, leading tok statistics. Beside the impor
tant problem of the agreement between the theoretical cu
and the observational data one does not neglect the ep
mological problem concerning the structure of the theo
which must be able both to explain the origin and to det
mine the value of any parameter appearing within the the

X. CONCLUSIONS

We summarize briefly the results obtained in the pres
effort. We have shown that beside the Boltzmann-Shan
entropy, the quantity

Sk52kB(
i

ni ln$k%ni ,

with ln$k%x5(xk2x2k)/2k and 21,k,1, is the only exist-
ing entropy, simultaneously concave, additive and extens
Starting from this entropy it is possible to construct a gen
alized statistical mechanics~and thermodynamics! having
the same mathematical and epistemological structure of
Boltzmann-Gibbs one, which is recovered when the de
mation parameterk approaches to zero. Within this genera
ized statistics the distribution function assumes the form

ni5aexp$k%@2b~Ei2m!#,

with exp$k%(x)5(A11k2x21kx)1/k while the constantsa
and b are given by a5@(12k)/(11k)#1/2k, 1/b
5A12k2kBT. The chemical potentialm can be fixed by the
normalization condition. This distribution has a bulk ve
close to the exponential one while its tail decays following
power lawni}Ei

21/k .

e
q.

n-

FIG. 5. Plot of the number densityN@events/(year mm)# of rain
events versus the event sizeM ~mm!. The solid line is the curve
obtained within the present theory and is given by Eq.~9.5! with
A583104 @events/~year mm!#, b575 (mm21) and k50.7. The
dotted line corresponds to the ordinary exponential functionk
50). The experimental data are from Ref.@8#.
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The origin of this deformed statistics has its roots in t
Einstein special relativity and the relativistic statistical m
chanics kinetics obeying theH theorem.

We have shown that, within the special relativity, it
possible to determine the value ofk, obtaining

1

k2 511S mc2

kBT D 2

,

s
0

nd

05612
-
so that the relativistic statistcal mechanics does not con
free parameters.

The theory can describe observational data in many fie
In particular we find a high quality agreement in analyzi
the spectrum of the cosmic rays which violates manifes
the Boltzmann-Gibbs statistics. This is an important test
the theory because the cosmic rays are relativistic parti
and their spectrum has a very large extension (13 decad
energy and 33 decades in flux!.
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